# A QUANTUM-CHEMICAL STUDY OF STRUCTURE OF $H_3O^+$ IN ELECTRONICALLY EXCITED STATES

Peter ERTL and Jaroslav LEŠKA

Chemical Institute, Department of Organic Chemistry, Comenius University, 842 15 Bratislava

Received June 13th, 1985

The CNDO/2-CI method has been used for full optimization of geometry of the  $H_3O^+$  ion in all its electronically excited singlet states and for calculation of electron distribution. The electronic structure shows that  $H_3O^+$  in almost all states exhibits lower tendency to split off the proton than it does in the ground state. For the first excited state the geometries and electron distributions of the isoelectronic set  $H_3O^+$ ,  $NH_3$ ,  $CH_3^-$  have been calculated by the INDO-CI method in the triplet state, too. The particles only have slightly different geometry and electronic distribution from those of the first singlet state.

The significance of  $H_3O^+$  ion in both chemistry and physiology initiated studies of its structure in the ground state by spectroscopic methods<sup>1-4</sup> as well as by quantumchemical ab initio methods with high-quality bases and with involvement of the correlation energy<sup>5-7</sup>. The  $H_3O^+$  ion is also supposed to exist in interstellar space<sup>8</sup>, and it is believed to play an important role in the dynamic processes taking place in cometary nuclei and trains<sup>9,10</sup>. The mechanism of formation of the excited  $H_3O^+$  ions in gas phase was experimentally studied at laboratory conditions<sup>11</sup>. As far as we know, however, no quantum-chemical studies of structure of H<sub>3</sub>O<sup>+</sup> ion in electronically excited states have been carried out so far (except for electronic vertical absorption spectra<sup>12</sup>). Therefore, we have carried out calculations of the equilibrium geometry and electron distribution of the  $H_3O^+$  ion in all the excited states which correspond to the levels involving all monoexcited configurations in the configuration interaction. This was carried out with regard to the possible occurrence of higher states of  $H_3O^+$  in the interstellar space and especially in the cometary trains, because there the particles exist practically isolated, which prevents the energy exchange with the environment. We applied the CNDO/2-CI method<sup>13</sup> which has proved useful in calculations of molecular geometries in electronically excited states.

#### **RESULTS AND DISCUSSION**

According to the calculations the  $H_3O^+$  ion in the  $S_0$  ground state has the electron configuration  $(1 a_1)^2 (1 e)^4 (2 a_1)^2 (3 a_1)^0 (2 e)^0$ . The optimum geometry is pyramidal

(Fig. 3) with the HOH angle equal to  $111\cdot0^{\circ}$ , which agrees well with the value  $111\cdot3^{\circ}$  obtained from the <sup>17</sup>O NMR spectral measurements<sup>2</sup> and with the values  $111\cdot6^{\circ}$ ,  $113\cdot1^{\circ}$ ,  $111\cdot6^{\circ}$  obtained from the *ab initio* calculations with a large basis involving the correlation energy (refs<sup>5-7</sup>, resp.). The O—H bond length 0.105 nm calculated by us is somewhat greater than the *ab initio* values 0.097 and 0.098 nm (refs<sup>5,7</sup>, resp.).

From the character of orbitals of the  $H_3O^+$  ion it follows that the energy needed for excitation of an electron into one of the unoccupied levels will be comparatively high. It can also be expected that the lowest transitions will also include the Rydberg transitions to 3s and 3p orbitals of the central atom, as it is the case with ammonia<sup>14</sup>. The method used, however, does not make it possible to include the Rydberg states, and the calculation is limited to the valence excited states only.

The dependences of the overall energies of the various states on the changes of HOH angle in the pyramidal (Fig. 1) and planar geometry (Fig. 2) indicate clearly the preference of a certain geometry in the respective excited state. From the correlation diagram (Fig. 1) it can be seen that the excited states  $S_1$ ,  $S_2$ ,  $S_3$ , and  $S_{12}$  have lower energy in the planar geometry, whereas  $S_6$ ,  $S_7$ ,  $S_8$ , and  $S_9$  have lower energy in the pyramidal geometry.



Fig. 1

Dependence of energy of individual states of pyramidal form on bond angle. The energies are related to the ground state energy





Dependence of energy of individual states of planar form on bond angle. The energies are related to the ground state energy

For  $S_4$ ,  $S_5$ ,  $S_{10}$ , and  $S_{11}$  the diagram shows small energy differences between the planar and pyramidal geometries. The preference of a certain geometry in a given state will be shown by the full optimization. The correlation diagrams in Fig. 2 are much more complex. The potential curves representing simplified energy hypersurfaces are mutually intersected and exhibit minima. As the natural sequence of levels is controlled by increasing energy, in the intersection points the levels have their maxima or minima (in the hypersurfaces they are mutually opposed cones touching by their peaks<sup>15</sup>). The crossing of hypersurfaces also causes a change in character of the given state after the crossing point. The first, third, fifth, eighth, ninth, eleventh, and twelfth curves show the minimum at  $< 120^\circ$ ; the second, fourth, sixth, seventh, and tenth ones at higher angles. This means that about these angles the H<sub>3</sub>O<sup>+</sup> ion should have the planar geometry in the respective excited states. The equilibrium planar forms of H<sub>3</sub>O<sup>+</sup> really exist in all these states. But according to Fig. 3 the optimum geometry is pyramidal in the states  $S_5$ ,  $S_6$ ,  $S_7$ ,  $S_8$ ,  $S_9$ , and  $S_{11}$ . The corresponding planar forms possess somewhat higher energies in these states.

According to the given results we have chosen the starting geometries for the optimization in the individual excited states. In the  $S_1$ ,  $S_3$ , and  $S_{12}$  states  $H_3O^+$  has





the optimum geometry (Fig. 3) of the  $D_{3h}$  symmetry, which corresponds precisely to the minima at the potential curves (Fig. 2) for these states at  $\neq$  HOH 120°. Two equilibrium geometries of  $C_{2x}$  symmetry with various HOH angles are obtained for the  $S_2$  state. The geometry with  $\neq$  HOH 92° has a higher energy by 0.16 eV than the optimum geometry with  $\neq$  HOH 155.6°. Similarly two equilibrium geometries of  $C_{2*}$  symmetry are also obtained for  $S_4$  (with  $\neq$  HOH 86.6° it is higher by 0.15 eV than the optimum with  $\neq$  HOH 165·2°) and  $S_{10}$  (with  $\neq$  HOH 97·1° it is higher by 0.26 eV than the optimum with  $\neq$  HOH 135.4°). In these states, too, the local minima correspond to the course of the respective curves in Fig. 2. In the  $S_3$ ,  $S_4$ ,  $S_{10}$ , and  $S_{12}$ states there are also local minima with the geometry of  $C_s$  symmetry and with energies higher by 0.01, 1.16, 0.36, and 0.20 eV, resp. In the excited states  $S_5$  through  $S_8$ ,  $H_3O^+$  has the optimum pyramidal geometry of  $C_s$  symmetry. In contrast to the first four states (each of them has one predominant configuration), structure of these states is determined by 2-3 configurations with equivalent weights. The  $S_9$  state has the geometry of non-symmetrical pyramide  $(C_1)$ , the differences in bond lengths and angles being but negligible and ascribable to the calculation inaccuracy. It is noteworthy, however, that the form of  $C_{3y}$  geometry with the bond angles and lengths equal to the average of the little differing bond lengths and angles has its energy higher by as much as about 1 eV. The structure of  $S_9$  state is determined by five configurations of equal weights. The structure of  $S_{10}$  state is noteworthy with respect to extremely high length of one O-H bond (about 0.150 nm). An only little unsymmetrical geometry ( $C_1$  very near to  $C_{3v}$ ) is also found with the  $S_{11}$  state. Its structure is determined by a single configuration. Comparison of the optimum geometries with prediction according to Fig. 2 shows that the crossing of hypersurfaces of the  $S_2$ ,  $S_3$ ;  $S_4$ ,  $S_5$ ;  $S_{10}$ ,  $S_{11}$  at  $\neq 120^\circ$  leads to the optimum geometry of higher symmetry  $(D_{3h})$  with a defined character of the state, whereas the crossing of  $S_3$ ,  $S_4$  and  $S_6$ ,  $S_7$  states near  $\neq 165^\circ$  retains the  $C_{2v}$  symmetry, but the character of the state is uncertain (Table I). The local minima of the states  $S_5$  and  $S_8$  having the geometry of  $C_{2v}$  symmetry and the  $S_6, S_7, S_9$ , and  $S_{11}$  states with  $D_{3h}$  symmetry have the energies higher by 0.57, 1.73, 1.46, 1.95, 1.75, and 0.17 eV than the optimum states. The S<sub>1</sub> through S<sub>3</sub> states are pure  $n \rightarrow \sigma^*$  transitions. The other transitions are of  $\sigma \rightarrow \sigma^*$  type. The optimum geometries of H<sub>3</sub>O<sup>+</sup> ion in all the excited states considered are given in Fig. 3. Characters of the states are given in Table I along with the adiabatic, vertical emission and absorption transition energies.

The calculated net charges at the atoms (Table II) show that the excitation to all the states is connected with electron shift from oxygen to hydrogens so that oxygen carries positive charge in all the states, the positive charge being the highest in the  $S_1$  through  $S_3$  states. On the contrary, positive charge of hydrogens is lower in the majority of states compared with the ground state, in several states one of the hydrogens even being negatively charged. In the  $S_5$  and  $S_{10}$  states the charge distribution among the hydrogens is most unequal, two of the H atoms having a higher positive

## TABLE I

| State          | Summatry          | Character of state |                       | Transition energies, eV |             |           |  |
|----------------|-------------------|--------------------|-----------------------|-------------------------|-------------|-----------|--|
| State          | Symmetry          | adiabat.           | vert. abs.            | adiabat.                | vert. emis. | vert. abs |  |
| S <sub>0</sub> | C <sub>3v</sub>   |                    | <b>4</b> <sub>1</sub> |                         |             |           |  |
| $S_1$          | $D_{3h}$          | $A_2''$            | $A_1$                 | 9.75                    | 9.26        | 11-41     |  |
| $S_2$          | $C_{2v}$          | B <sub>1</sub>     | Ε                     | 11.34                   | 9.98        | 12.76     |  |
| $S_3$          | $D_{3h}$          | E"                 | Ε                     | 11.89                   | 11.34       | 12.78     |  |
| $S_4$          | $C_{2x}$          | a                  | Ε                     | 13.00                   | 11-49       | 15-41     |  |
| $S_5$          | C,                | A'                 | Ε                     | 14-23                   | 12.66       | 15.41     |  |
| $S_6$          | $C_{s}^{b}$       | A"                 | $A_1$                 | 14.90                   | 13.69       | 16.47     |  |
| $\tilde{S_7}$  | Ċ                 | а                  | E                     | 15-54                   | 14-28       | 17.75     |  |
| $S_8$          | Ċ,                | A″                 | Ε                     | 16.16                   | 14.87       | 17.75     |  |
| S              | $C_1^{b}$         | $(E)^{c}$          | Α,                    | 20.17                   | 19.55       | 22.00     |  |
| $S_{10}$       | $C_{2v}$          | $A_1$              | Ε                     | 33.61                   | 28.13       | 36-55     |  |
| $S_{11}$       | $C_1^{\tilde{b}}$ | $(\vec{E})^c$      | Ε                     | 34.29                   | 31.81       | 36.57     |  |
| S12            | $D_{3h}$          | A                  | $A_1$                 | 35.95                   | 34.23       | 37.75     |  |

Data on structure and transition energies of the  $H_3O^+$  ion in electronically excited states

<sup>a</sup> The energy minimum is at the point of intersection of the levels and its character is indefinite; <sup>b</sup> very close to  $C_{3y}$ ; <sup>c</sup> character of the state in the  $C_{3y}$  geometry.

## TABLE II

Net charges at individual atoms of the  $H_3O^+$  ion in the electronically excited states (the order of the hydrogens  $H_1H_2H_3$  in Fig. 3 is from the left to the right anti-clockwise)

| <b>C</b>          | Net charge at the atom |                |                  |                |
|-------------------|------------------------|----------------|------------------|----------------|
| State             | 0                      | H <sub>1</sub> | H <sub>2</sub> . | H <sub>3</sub> |
| S <sub>0</sub>    | -·118                  | ·373           | ·373             | ·373           |
| $S_1$             | ·590                   | •137           | ·137             | ·137           |
| $S_2$             | ·514                   | -·139          | -312             | ·312           |
| $\tilde{S_3}$     | -471                   | -·043          | ·289             | ·282           |
| $S_{\mathbf{A}}$  | ·329                   | ·549           | ·061             | ·061           |
| $S_{5}^{\dagger}$ | ·303                   | •111           | ·404             | ·404           |
| $S_{6}$           | ·326                   | ·192           | ·241             | ·241           |
| $\tilde{S}_7$     | ·314                   | ·108           | ·289             | ·289           |
| S                 | ·314                   | ·373           | ·156             | ·156           |
| S                 | ·378                   | ·210           | ·207             | ·204           |
| Sin               | ·297                   | ·143           | ·423             | ·423           |
| S                 | ·352                   | 003            | ·288             | ·363           |
| $S_{12}$          | ·360                   | ·213           | ·213             | ·213           |

| TABLE III                     |                |                   |                         |                                      |                                      |                      |               |                   |                |                |
|-------------------------------|----------------|-------------------|-------------------------|--------------------------------------|--------------------------------------|----------------------|---------------|-------------------|----------------|----------------|
| Data on geome                 | try, net chai  | rges, and transit | ion energies c          | of the H <sub>3</sub> O <sup>+</sup> | <sup>+</sup> , NH <sub>3</sub> , and | CH <sub>3</sub> mole | cules in the  | $S_1, T_1$ states | (the INDO-C    | [ calculation) |
| Molon                         | Ctote          | Cummatru          | State                   | Geo<br>para                          | metry<br>meters                      | Charge               | densities     | Transi            | tion energies, | ٧              |
| MORCHIC                       | Dialo          | oymmen y          | character               | mn<br>H—X                            | $\not\prec$ HXH deg                  | ×                    | Н             | adiabat.          | vert.<br>emis. | vert.<br>abs.  |
| H <sub>3</sub> O <sup>+</sup> | So             | C <sub>3v</sub>   | 1 <sub>A1</sub>         | ·1045                                | 117-5                                | 143                  | .381          |                   |                |                |
| 2                             | S <sub>1</sub> | $D_{3h}$          | $^1A_2^{''}$            | .1100                                | 120                                  | 609.                 | ·130          | 9-97              | 9-54           | 10-53          |
|                               | $T_1$          | $D_{3h}$          | $^{3}A_{2}^{"}$         | $\cdot 1091$                         | 120                                  | <del>6</del> 09•     | ·130          | 8·24              | 7-93           | 8-76           |
| $\rm NH_3$                    | $S_0$          | $C_{3v}$          | ${}^1A_1$               | ·1069                                | 106-4                                |                      | ·078          |                   |                |                |
|                               | $S_1$          | $D_{3h}$          | $^{1}A_{2}^{"}$         | ·1106                                | 120                                  | .363                 | $- \cdot 121$ | 7-03              | 6.32           | 8•14           |
|                               | $T_1^-$        | $D_{3h}$          | ${}^3A_2^{"}$           | ·1106                                | 120                                  | .363                 |               | 4.92              | 4.21           | 6-95           |
| CH <sub>3</sub>               | $S_0$          | $C_{3v}$          | ${}^1A_1$               | ·1139                                | 104-1                                |                      | 156           |                   |                |                |
|                               | $S_1$          | $D_{3h}$          | $^{1}A_{2}^{\tilde{n}}$ | ·1175                                | 120                                  | 047                  | 318           | 5.52              | 4.49           | 6-63           |
|                               | $T_1$          | $D_{3{ m h}}$     | $^{3}A_{2}^{"}$         | ·1173                                | 120                                  |                      |               | 3.30              | 2.31           | 5-86           |
|                               |                |                   |                         |                                      |                                      |                      |               |                   |                |                |

1

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

743

charge than in the ground state and the third H carrying a strong negative charge.

Comparison of the CNDO/2 vertical absorption energies (Table I) with the data of *ab initio* calculations<sup>12</sup> (with involvement of all mono- and biexcited configurations of the reference configurations in CI) shows a very good agreement. So the CNDO/2 values (in eV)  $A_1$  11.41,  $A_1$  16.47,  $A_2$  22.00 and six E states from 12.76 to 17.75 correspond to the *ab initio* values  $A_1$  12.00,  $A_1$  17.12,  $A_2$  20.53,  $A_2$  23.11, E 14.64, E 17.24.

The  $H_3O^+$  ion is isoelectronic with NH<sub>3</sub> molecule and CH<sub>3</sub><sup>-</sup> ion. To compare the structural changes due to electronic excitation in this isoelectronic set, we optimized the geometry in both the first singlet and triplet states by the INDO-CI method. For both  $H_3O^+$  and NH<sub>3</sub> this method gives practically the same geometry in the  $S_1$  state (Table III) as compared with that of the CNDO-CI method. But for  $H_3O^+$ in the  $S_0$  state it gives a higher value of  $\leq$  HOH. The CH<sub>3</sub><sup>-</sup> ion in the  $S_1$  state has the same symmetry ( $D_{3h}$ ) as  $H_3O^+$  and NH<sub>3</sub>; only different (somewhat longer) is the bond length CH. In the  $T_1$  state all three isoelectronic molecules have but slightly different geometry from the  $S_1$  state. The same is true for the net charges at the atoms and of the transition energies.

The results given can serve as useful information for studies of photochemical reactions of  $H_3O^+$  ion at cosmic conditions. The electron distribution shows that the  $H_3O^+$  ion has a lower tendency to split off the proton in all the electronically excited states than it does in the ground state; in some of the states the O—H bond is even specially strenghtened by interaction of negative charge at hydrogen with positive charge at oxygen. Therefore, even in the  $S_{10}$  state the extremely long OH bond (about 0.150 nm) does not indicate weakness of this bond, because splitting off of hydride anion from the positive  $H_3O^+$  ion is little probable. But in spite of that, homolyses and heterolyses of O—H bonds are likely in higher electronically and, at the same time, vibronically excited states. With respect to semiempirical character of the calculations the results, especially the order of levels, must be accepted somewhat carefully.

Another aim of this paper consisted in further testing of the gradient optimization method<sup>13</sup>. In all the calculations the gradient procedure converged relatively rapidly. Certain difficulties only were encountered near the minimum, especially so in the higher states, which is obviously due to neglecting the terms  $(\partial E/\partial c) (\partial c/\partial q_x)$ .

#### REFERENCES

- 1. Fournier M., Mascherpa G., Rousselet D., Potier J.: C. R. Acad. Sci. C269, 279 (1969).
- 2. Symons M. C. R.: J. Amer. Chem. Soc. 102, 3982 (1980).
- 3. Begemann M. H., Gudeman C. S., Pfaff J., Saykally R. J.: Phys. Rev. Lett. 51, 554 (1983).
- 4. Haese N. N., Oka T.: J. Chem. Phys. 80, 572 (1984).
- 5. Rodwell W. R., Radom L.: J. Amer. Chem. Soc. 103, 2865 (1981).

#### Quantum-Chemical Study of H<sub>3</sub>O<sup>+</sup>

- 6. Del Bene J. E., Frisch M. J., Raghavachari K., Pople J. A.: J. Phys. Chem. 86, 1529 (1982).
- 7. Bunker P. R., Kraemer W. P., Špirko V.: J. Mol. Spectr. 101, 180 (1983).
- 8. Krolik J. H., Kallman T. R.: Astrophys. J. 267, 610 (1983).
- 9. Marconi M. L., Mendis D. A.: Moon Planets 27, 27 (1982).
- 10. Shulm L. M.: Report 1982, Kiev (C. A. 99, 113469).
- 11. Koski W. S.: Int. J. Radiat. Phys. Chem. 8, 151 (1976).
- 12. Raffenetti R. C., Preston H. J. T., Kaufman J. J.: Chem. Phys. Lett. 46, 513 (1977).
- 13. Leška J.; Ondrejičková D., Zahradník P.: Theor. Chim. Acta 53, 253 (1979).
- 14. Herzberg G.: Molecular Spectra and Molecular Structure. Van Nostrand-Reinhold Company, Toronto 1966.
- Davidson R. E., McMurchie L. E.: Ab initio Calculations of Excited-State Potential Surfaces of Polyatomic Molecules in Lim E. C.: Excited states, Vol. 5. Academic Press, New York 1982.

Translated by J. Panchartek.